
NASA Contractor Report 181691

ICASE INTERIM REPORT 5

PROGRAMMING THE NAVIER-STOKES COMPUTER:

AN ABSTRACT MACHINE MODEL AND A VISUAL EDITOR

David Middleton, Tom Crockett, and Sherry Tomboulian

NASA Contract No. NASI-18107

August 1988

t I, ASi_-C_- 1_ loS1) f. [_OG_ AM tl11_6 _tP. N89-1Cb6G
_;_,_IEfi-5'](.Kt'.'5 C(tItlEF: Ab _[_'j.}._,(.1_ _AC_II_E
EC[;E£ A_ _ VIS[Ii £fllCR iir._i ]I t_cim

I_o_t _c. 5 (_J) 31 p CSCL 09B Uncla_
G3/01 01£55£3

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

Nalional Aeronautics ancl
Si3ac.,eA0ministral_on

Hampton.Virginia 23665





ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.

The series will complement the more familiar blue ICASE reports that have been

distributed for many years. The blue reports are intended as preprints of

research that has been submitted for publication in either refereed journals or

conference proceedings. In general, the green Interim Report will not be submit-

ted for publication, at least not in its printed form. It will be used for research
that has reached a certain level of maturity but needs additional refinement, for

technical reviews or position statements, for bibliographies, and for computer

software. The Interim Reports will receive the same distribution as the ICASE

Reports. They will be available upon request in the future, and they may be

referenced in other publications.

Robert G. Voigt
Director





Programming the Navi_r-Stokes Computer:

An abstract machine model and a Visual Editor.

David Middleton, Tom Crockett and Sherry Tomboulian

ICASE, NASA Langl_y Research Center

The Navier-Stokes Computer (NSC) is ir_tended to apply large numbers of floating

point ALUs to computational problems that can be expressed using calculations on long

vectors [Nosenchuck et al. 87, Tomboulian et al. 88]. Since programming language consid-

erations were ignored in the hardware design, efficient operation will depend on machine

level programming. The Visual Editor devel(,ped here is intended to provide a support-

ive environment in which the programmer c_,n more effectively write machine language

programs.

Any programming system presents the user with a model of computation. The abstract

Navier-Stokes computer described in this docament is an explicitly chosen model for the

Visual Editor to present. We prefer this approach to having the computational model

evolve implicitly while the Editor is construct,._d. We do not use the complete NSC as this

model for several reasons, in particular because of its complexity and, as yet, lack of stable

definition.

The abstract model is a subset of one node in the actual machine. This allows us to

ignore issues of synchronisation, communication and multiprogramming that arise in the

actual machine and to avoid implementing fea;ures not provided directly by the hardware.

Naturally, it is hoped that the abstract mod_.'l presented would waste little of the com-

putational power of the eventual NSC (at least, for many problems) and that the Editor

would provide trapdoors to allow the programmer to use the ignored features (although

possibly only with relative difficulty).



The basic philosophy of the Visual Editor is to provide support and verification to

the programmer building the complex microcode structures since even the abstract model

remains ill-adapted to compilation tools. That is, the programmer makes all programming

decisions, in particular, those regarding the allocation of resources; the Editor merely

indicates errors without suggesting alternatives. A method for programming is developed

(from which the Visual Editor's operations are derived) which we hope will simplify the

programmer's task.

This paper deals with three separate things which must be kept distinct: the actual

node with its abilities, the abstract, subset node with its abilities, and the programming

method with the attendant verification and abstractions to be provided by the Editor.

The first section describes the abstract hardware model; the second section describes the

programming process and the way that the Visual Editor would support it. The paper

assumes fairly detailed knowledge of the _full node _ of the NSC. Since its design is still

being completed, the level of detail being attempted here will naturally lead to some

inaccuracies.

Abstract Navier-Stokes Machine node: a subset of reality.

An abstract node has three parts: computation units which are connected to form

pipes, pipelines consisting of pipes and a memory system with DMA controllers which

assembles and feeds vectors into them and store vectors of results, and a central controller

which (statically) schedules pipelines.

Computation Units.

These comprise 2 shift/delay units and 32 ALU's. The shift/delay units allow a vector

arriving from memory to be duplicated with different offsets. Each one contains four

serially connected FIFO queues whose outputs are available to some ALU's through the

local switches.
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Each ALU has a small internalregisterset which can be used in several ways, such as

supplying the constants of an expression being evaluated. Each ALU issymmetrical, that

is,ifitcan do A O B, itcan do BOA. In the actual node, thismay involveswitching inputs

or manipulating the ALU's output. Each input has a delay unit, calleda vector latch,for

aligning the ALU's vector operands. The de_ay period can vary from zero to the sizeof

the registerset. The ALU's are not homoger_eous with respect to the functions they can

perform; there are at leastthree differentkinc_sof ALU depending on whether integer and

logic or minimum and maximum operations ere available.

The possible connections between ALU's are restricted in order to increase the num-

ber available. In particular, the 32 ALU's are hardwired into 16 Arithmetic/Logic Unit

Structures (ALS's) as 4 singlets, 8 doublets aad 4 triplets. Programs can only control the

output destination of the 16 ALU's at the ou,:puts of the ALS's.

Implementation aspects.

Actual ALU's can be internally configured in various ways; these correspond to specific

uses, such as evaluating recurrences, which can be displayed directly in the high level

representation of the abstract ALU's in the Editor.

For connecting various units together, a_ actual node contains caches and switches

(labeled MxF, DxF, DxS, FxF, SxF, FxD), both of which are absent from the abstract

model. In the transition from the model to _n actual node, the caches can be allocated

in a straight-forward fashion, since the ability to store information between pipelines (by

using the caches as vector registers) is ignored. The implementation of the switches leads

to some complicated restrictions that will be explained in the programming section.

Memory System.

Memory in the abstract node consists of 16 planes (each with 128 mega-words) with

hard boundaries between them; specifically, t Re user must allocate storage for variables so



that the inputs and outputs of each pipeline reside in individual disjoint memory planes.

This exists because in the actual node, significant difficulties or penalties occur if, in a

single pipeline, one variable spans multiple planes or one plane holds multiple variables.

In the actual node, 16 Pipeline DMA units (PDMA's) must be programmed to gen-

erate and feed vector streams into pipes or to store vector streams back in memory. The

corresponding input and output blocks in the Editor are given vector specifications which

consist of an initial address, a count, a stride, a repetition factor and a pipeline delay. The

first three are obvious; the repetition factor allows a single input value to be repeated or

several output values to be overlain (thus keeping only the last one); the pipeline delay

indicates the number of extra values which must be sent at the end or stored in front of

the actual vector due to the filling and flushing a pipeline requires. The Editor ought to

be able to deduce vector specifications from information provided during the programming

process.

Implementation aspects.

The facilities provided by the caches and their controllers and the pipeline and mem-

ory DMA units are used only to implement the vector specifications described above. The

switches in the actual memory interface (MxD, DxM, MxM, FxM) are absent from the

abstract node, and in at least two cases, some loophole specification method is necessary.

The MxM switch would likely be used in cases where a variable needs to reside in differ-

ent memory planes for different pipelines. Also, communication between different nodes

(through "hyperspace') uses these ignored facilities.

Assuming cache ordering is irrelevant, in each pipeline we arbitrarily number the input

caches 1 to n and the output caches n+l to n-t-k (where n+k <_ 16). We assume caches are

initially empty and are flushed after each pipeline finishes, that is, they do not hold results

to be used from previous computations. This appears to be optional in recent versions of

the actual machine (each cache has a 'sticky' bit, called "read/write").
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For the actual node, several independent pipelines (built from disjoint resources) can

be separately or jointly initiated to operate in overlapping time periods. The definition

of a pipeline, in the abstract node is now extended to include several disjoint pipelines as

defined earlier. The extension merely allows a pipeline to have disconnected parts. The

difference from the actual NSC is that these c_mponent pipelines may not be dynamically

scheduled: a set of component pipelines that play operate together are statically scheduled

by the programmer always to run together. The components would operate in lockstep

except that individual cache misses might stal! one component while others proceed. Each

component pipeline is internally synchronousl a delay at any of its PDMA's stalls all the

PDMA's in that component. Although cache misses should in fact be predictable (the

machine is not multiprogrammed), we view c;_che misses as indeterminate for simplicity.

For each component pipeline, one PDMt_, is designated to send an End-Of-Pipeline

(EOP) interrupt to the central controller whe_:l that pipeline finishes. The implementation

of central control would be responsible for awaiting several PDMA EOP interrupts, one

from the distinguished PDMA in each component, before initiating the next extended

pipeline.

F1ow of control

In an actual node, the central controller initiates pipelines by issuing the appropriate

long instruction words to the various units described above. (Individual fields can be

disabled so as not to interfere with other pipeliaes already in progress). It contains a micro-

sequencer which selects the appropriate pipelines by executing microcode in a conventional

way. We ignore the ability in the actual node of the Pipeline Status Table (and several

other hardwired processes) to initiate pipelines. If this facility cannot be disabled, then

the pipelines issued in those cases should have all their fields disabled.



In the abstract node, a pipeline will generate as many interrupts before it is finished

as there are disjoint component pipelines. Having initiated a pipeline, the main microse-

quencer waits for this number of interrupts before proceeding to its next instruction (which

may be to initiate another pipeline or to execute its own code implementing more complex

control flow).

For the Visual Editor, a simple standard block-oriented language could be built on top

of this machine model. The basic statements, pipeline initiations, would be aggregated

using looping and conditional statements. Some loophole might be necessary to allow

specifying blocks of micro-code, particularly, for example, in implementing the logical

tests associated with control flow statements.

Conditional Vector Expressions

The actual node provides a mechanism for performing some conditional computations

at full speed inside vectorised loops. This includes merging two vectors according to a

logical mask, a feature which is available in some commercial vector machines. Exam-

ples (in the language C) that can be implemented as Conditional Vector Expressions

are "for(ifa;i<b;i+ffic) { if (test(i)) D[i]ff(i); else E[i]=g(i); }"

"for(ifa;i<b;i+=c) D[i] = ((test(i)) ? f(i) : g(i)) ;"

and

These expressions can be implemented as single pipelines with support from specialised

hardware in the central controller, called the condition code resolution circuitry. The

facility will be described by showing how the second example would be executed.

First, the functions test, / and g are implemented with three component pipes, using

the appropriate input vector variables. Although not necessarily evident from any diagram,

these pipes need to be linked so that if one PDMA unit, say in 1, suffers a cache miss,

then the others, including those in the pipelines for g and test, will also stall. Second, the

memory specifications for feeding these pipes are organised so that the values f(i) and g(i)
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are available exactly one clock cycle after the i_unction test(i) has generated an appropriate

flag for the condition code resolution circuitry. Finally, two versions of this aggregate pipe

are created, differing only in that the output in one comes from the f pipe while that of

the other comes from the g pipe. The condition code resolution circuit issues one of these

two pipeline specifications every clock cycle, according to the value of test. As a result,

either the output of the f pipe or the g pipe is sent to the variable D in memory. The

actual node must not allow this continual iss_ing of pipeline instructions to interfere with,

for example, the counters operating in the PI)MA units.

More details cannot be given about the abstract node's abilities as regards Conditional

Vector Expressions until the actual node is better defined. Obviously, large numbers

of function units, easily exceeding the number available, may be used (inefficiently) to

maintain full vector speed in this fashion. In such cases, precomputing and storing any of

the three vectors is an obvious alternative for the programmer to use.

Neglected abilities of the actual NSC node

This section is an incomplete in-line app_.ndix listing facilities of the actual node that

have not been exploited in the subset abstract node.

Caches contain 'sticky' bits allowing data to be stored from one pipeline to

another.

The Pipeline Status Table can autononously initiate pipelines following others'

terminations.

The microcode is tree-structured rather than being flat, enabling specifications

of memory configuration and pipe structu_:'e to be re-used. (This is due to the actual

hierarchy not matching the abstract node's divisions which strongly interferes with

any useful sharing of specifications).
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Programming the abstract node with the Visual Editor.

This section describes two separate concepts: the programming process for the NSC

and as a derivative, the interface and support functions to be provided by the Visual Editor.

A basic motivation for the Visual Editor is that the complexity of the NSC will prevent, at

least in the near future, the development of compilers that can produce adequately efficient

code. The goal of the Editor is to provide the user with a support tool for machine level

programming that presents decisions in a suitable order to minimise undoing previous

choices, and that validates those choices as they are made.

The programming process is first described and then demonstrated using two examples

(expressions to be evaluated within appropriate loops):

1
P_,i,k = _(U_-l,i,,, + U_+_,i,k + U_,i-x,k + U,,i+_,k + U_,i,k-_ + U_,_,k+l - 6U_,i,k) - G_,_,k

taken from the paper by Nosenchuck, Krist and Zang, and later, X_ = Z_(Y_- X_-I), a

recurrence taken from the Livermore Loops [McMahon 86].

The programming process.

The Visual Editor presents a main panel for displaying a pipeline computation flanked

by side panels which display a menu, variable declarations and the control flow program

(see Figure 1).

The first stage o/programming.

First, the programmer writes the expression occurring within the loop in a comment

area at the top of the main panel and second, derives (on paper) a data flow diagram

which implements that expression. This step is difficult to automate due on the one hand

to the wide range of variations that can arise, for example, through applying associativity

and commutativity and selecting common subexpressions, and on the other hand to the

timing constraints which the machine imposes. These aspects are particularly evident in

the linear recurrence example.
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Figure 1. Visual Editor layout

Third, the user constructs a pipe correst, onding to this data flow diagram, allocating

singlets, doublets, triplets and shift/delay units from the menu. This step also includes

many choices which affect path lengths. Path lengths turn out to be crucial in the linear



recurrence example. Restrictions on the operations available in different ALU's also man-

ifest themselves in this step. Appropriate techniques to support automation include using

back-tracking languages such as Prolog and using graph grammars with the ALS's (and

the types of function units) as the terminal symbols.

Along with the ALS's and shift/delay units, the menu contains input and output blocks

which generate (most of) the vector specifications for streams moving to and from memory

planes.

The input and output blocks in a given pipeline must specify distinct variables. When

one variable occurs several times in a pipeline (likely with different subscripts), all uses

must connect to the same input block. In the pipeline, the different subscripts are im-

plemented by different initial delays; this aligns the vectors entering computational units.

The different delays can be seen with the variable U in the first example.

The first stage of analysis and validation.

Fourth, the Editor verifies that the different path lengths will correctly align the dif-

ferent vectors in the computation. Starting at each output block, it counts the delay from

various points in the pipe, moving back towards the input blocks*.

Mismatches in path lengths can arise when two backward accumulations from output

blocks arrive at one point in the pipeline. This occurs when a value (either an input or

a local subexpression) is used more than once. In some cases, this can be remedied by

choosing a non-zero initial delay at one of the output blocks; this non-zero delay would

be incorporated into the vector specification created for the PDMA associated with that

block. This approach of using the PDMA's ability to pad input vectors with leading and

* It counts one clock per ALU, one clock per connection (corresponding to traversing

a Type 1 or 2 switch), and whatever delays were specified by the programmer for vector

latches and shift/delay registers. The connections to and from a shift/delay unit together

cause only one clock of delay. There are further delays associated with cache and memory

connections, which are not yet completely specified.
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trailing dummy values which output PDMA's will discard, will not work if a common

subexpression is used multiple times in calc_llating the same result. In such cases, an

error is signalled and the programmer inserts delays explicitly by using shift/delay units

(a scarce resource) or by using vector latchin_: in the ALU's along the short paths.

In the case of a duplicated input variable, I_he various path lengths leading to the input

block must differ in the same amounts that th,:_=subscripts associated with each path differ.

The final value(s) for the path length of the pipe gives the pipeline delay, which is used

later in creating vector specifications for the PDMA's.

When a value is used more than once, soml_ complex restrictions in the switch networks

will also occasionally cause difficulties. The F <F switch connecting the 16 ALS outputs to

48 ALS inputs is built from three 16x16 permutation networks, thus dividing the 48 ALS

inputs into 3 disjoint sets, labeled a, b and e. When a single value is sent to multiple ALS

inputs, those inputs must be distinctly labelc:d. This limits the fanout to at most three

and further constrains which sets of inputs can share a value. The labelling details are

shown in Figure 2.

We assume that simple numeric limits ov fanout are sufficient at this stage and that

the ability to swap inputs inside the ALS's c_n overcome the detailed restrictions, which

the Editor checks at a later stage. The outpul: of each unit is provided with several counts

each corresponding to the fanouts of the swit_:h blocks to which that unit provides inputs.

For example, ALS's may be connected to other ALS's with a fanout of 3, to shift/delay

units with a fanout of 1 or to output PDMA_s with a fanout of 1 (via the FxF, FxS and

FxD switches respectively). In the Editor, connecting an output block to a given ALS

decrements the ALS's first count and connecting an ALS input to that ALS decrements

its second count. Similarly, an input block has a fan-out of 3 to ALS's and 2 to the

shift/delay units, and a shift/delay unit ha': a fan-out of 2 to ALS's. (Further, quite
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abca abcc abcb abca

abc abc abc acb

acb acb cba cba

a b a c c b c b

I':Il':rr':p

Figure 2. Labelling of ALS inputs

serious, restrictions apply to shift/delay outputs in that they can not be connected to all

ALS's. This is dealt with later.)

A shift/delay unit displays four different delays each with respect to the input. The

Visual Editor will check that the four serial queues which implement a shift/delay unit can

support the given delays. The values are ordered and a limit of 8192 is placed on each of

the three consecutive differences and the smallest value.
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The secor_d stage of programming.

Fifth, the programmer allocates specific ALS's to the singlets, doublets and triplets

that form the pipe, satisfying the tightest restrictions first.

The greatest restriction on this step is that the outputs from the shift/delay units only

connect to two triplets (ALSo and ALS1), two doublets (ALS4 and ALSs) and one singlet

(ALSI_). Furthermore, each of the eight outputs can only be used twice, once as an input

to ALSo, ALS4 or ALSx2, and once as an inpLlt to ALS1, ALS5 or ALS12. This restriction

strongly affects the third step in which the programmer created the pipe from the data

flow diagram.

The other difficulty lies with paths that fork, especially from the shift/delay units,

but also from ALS's and input blocks. Sharing subgraphs, which causes such forking,

has a large effect, even on the initial choice of data-flow graph, and so appears hard to

automate. ALS's must be allocated so that input labels that connect to any given fork

point differ. It is not yet evident whether this will be difficult for the programmer. Again,

the backtracking facilities of Prolog naturally lend themselves to this operation.

Allocation of remaining ALS's can be doom arbitrarily.

The third stage o/programming.

Having constructed a pipe to combine str_:ams of values, the programmer next specifies

how to generate the streams from multidimensional arrays.

Sixth, the programmer provides a controlling loop whose index is used to generate

vectors. The loop, modelled on FORTRAN implied loops, is specified at the top of the

main panel near the textual comment describing the expression. (If the programmer creates

an extended pipe which has independent components, then each one should have its own

loop index, however all connected input/output blocks must use the same index).
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Seventh, the programmer declares the variables in the side panel. A declaration

looks like "X(10,20.S0) in rapS" which means the array X with subscripts in the ranges

(0..9,0..19,0..29) is stored in memory plane 3.

Eighth, for each input and output variable, the programmer creates a stream specifi-

cation which allows values to be read from (or, in the case of output blocks, stored into) a

sequence of the variable's locations that differ by a constant stride. A stream specification

will not allow a variable to be scanned in a transposed order from that of its storage; each

"column" of the transpose could be fed to a pipeline computation, but explicit looping

in the control flow program would be needed for the "outer loop". (It is unclear whether

PDMA's in the actual node allow access to variables by "nested loops").

A stream specification comprises a variable name with a list of subscript czpressions

which matches the subscripts in the variable declaration. Each is a linear expression in the

loop index, and where it has a consistent meaning, may be used to cover several consecutive

indices.

The abilities and restrictions of stream specifications are best demonstrated through

some examples (assuming that X, as declared above, is stored with its leftmost subscript

varying most rapidly). "X(i)" with a controlling loop of "i--0.6000" scans X in storage

order. "X(i)" with a loop of "i_-0.6000.2" scans X in storage order, only taking alter-

nate values from the "rows", and is equivalent to "X(2*i)" with a loop of "i=0.S000".

"X (i)" with a loop of "i--0,6000.3" might well be forbidden, or at least flagged, since the

increment, 3, does not divide the first index range, 10. "X(i)" with a loop of "i--0,200"

gives the first plane of X. "X(i. 1)" with a loop of "i=0,9.00" gives the second plane of

X. "X(i)" with a loop of "i--0,400" gives the first and second planes of X. "X(1.i)"

with a loop of "i--0,300" gives a second plane of X at a different orientation. No stream

specification can be made for the third orientation since it cannot be scanned with a single

stride. "X(i.i.i)" with a loop of "i--0,10" yields a diagonal.
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Vector specificationsare constructed from the control loop, the stream specifications,

the individual offsetsassociated with uses of iaput variables,and pipeline lengths.

The second stage of analysis and validation.

Ninth, the Editor verifies that the variables fit in memory as declared and that for

each pipeline, all the variables are in distinct memory planes. The actual NSC design

may require that space be left preceding output variables to contain initial garbage values

generated by the pipe; this is expensive in the case of large strides.

The number of iterations given by the coatrolling loop, added to the pipeline's path

length indicates the count to be specified to the PDMA's. Offsets associated with the input

and output blocks indicate appropriate offsets to the variables' base addresses, yielding the

initial addresses for the PDMA's.

Subscript expressions within the input ancl output blocks yield the stride for address

specifications. Subscript expressions can be checked for out-of-range violations with respect

to their variable's declaration.

It appears that the replication field, whi_e useful for the linear recurrence example

below, cannot be determined through this model of the Visual Editor. Explicit specification

by the programmer will be necessary.

The fourth stage of programming.

Tenth, the user writes a control flow program to initiate pipeline computations in a

language similar to assembly language and BASIC. This step cannot be designed in more

detail until the actual NSC node is better defined.

Final notes.

From the subscript expressions and in part, icular the offsets, it ought to be possible to

derive delays such as those needed to address neighbours in a grid, as is used in the first

example.
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For each pipeline, a particular Pipeline DMA unit is selected to notify the main se-

quencer when the pipeline completes. Any variable (input or output) seems sufficient for

this task.

Distributing variables across memory planes is extremely useful if a pipe can be du-

plicated since this provides further parallelism. This is the responsibility of the user, and

requires that variables be manually partitioned into separately named pieces.

The following appears to be a reasonable method for the Editor to calculate path

lengths. Where possible, path length discrepancies are resolved by altering initial lengths

at the output blocks so that all begin with non-negative values and at least one is zero;

otherwise require the user to insert delays as described above. Calculate the list of path

lengths for each use of an input variable and the list of offsets derived from the subscripts

associated with each variable's use. Compute a third vector of non-negative values such

that this vector plus (position-wise) the initial path length vector plus the offset vector

gives a constant vector. This third vector represents the delays that must be inserted at

the input PDMA's, and the repeated value in the constant vector is the pipeline delay,

that is the number of clock cycles which the PDMA's must run beyond the length given

by the controlling loop.

Examples programmed.

Example #1.

The expression and a corresponding data-flow graph for the first example are shown

in Figure 3. This is only one graph chosen from many possibilities to satisfy high-level

considerations; it is created by applying arithmetic rules, such as, in this case, translating

a- (bx c) into a + (-bx c). Let us assume that U has dimension 5003 and so U will (barely)

fit in a single memory plane (128 Mwords). However, generating Ui.£k-1 and U_,j,_+I, which

are separated by 500,000 locations, is, first, not possible with the shift/delay units and,

second, would add this amount to the pipeline length, which is otherwise just over 1000.
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Ui,j,k- 1 Ui,j,k+ 1 Ui,j,k Ui-l,j,k U i+l,j,k Ui,j-l,k Ui,j+l,k Gid,k

R
i,j,k

Figure 3. First example to be programmed

Hence, as described by Nosenchuck eta/., U :_s partitioned across three memory planes,

according to the value of the third subscript modulo three, so that U_,j,k-l, Uid,t+l and the

five values U.,.,t, lie in distinct memory planes. (Since R/,j,k is used to update U, it may be

independently necessary to create two copies of U in two separate sets of memory planes,

alternately generating each from the other). The five values lying in the same plane, U_,£k,

U__I,j,_, U_+l,/,k, Ui,j-l,j, and Ui,j+l,_, are generated using a shift/delay unit from a single

stream coming from the one memory plane.
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A pipe created by allocating resources to this data-flow graph is shown in Figure 4.

Various points demonstrate the decisions made at this point in programming. Since only

9 ALU's from the total of 32 are used, this pipe might be duplicated once or twice to

increase the processing speed proportionally (requiring in turn that the variables U, G

and R be further partitioned across separate memory planes appropriately). The number

of memory planes, the lack of a third shift/delay unit and the restrictions on ALS's which

can be connected to the shift/delay units prevent a third copy of the pipe from being built.

Doubling the pipe probably requires dividing U into 6 memory planes to avoid performance

penalties in accessing memory (although the actual PDMA's may allow interleaved access

by two separate pipelines to the same memory plane).

The triplet and the upper doublet in Figure 4 must be chosen from ALSo, ALS1, ALS4

and ALSh, since only these can connect to the S×F switch. Restrictions on the shift/delay

unit to ALS connections can affect the shape of the pipe. For example, the stream of U_,£k

values could be generated from U_+l.j,k with a one element vector latch in the same manner

as U_-l,j,k. Assuming that were the case, those three values could not be combined in a

single ALS because of the constraints imposed by the SxF network; a single shift/delay

output can be shared to create U_+l,i,k and Ui-l,j,_ only because of the reconfiguration

provided inside ALU's.

Figure 5 shows the pipeline delays calculated at various points in the pipe, relative to

the R_,i, k output which has been set to zero. Thick horizontal cuts across paths represent

the delays of the switching networks. In order that the subscripted variables specified at

the inputs will all meet correctly aligned, all the paths through the pipe must have the

same length. The five values derived from variable U1, U_,j,k, Ui-l,j,k, Ui+l,£k, U_,j-l,k and

U,,j+,,j,, have offset expressions of (0,0), (-1,0), (1,0), (0,-1) and (0,1), respectively, and

require relative delays of 500, 501,499, 1000 and 0 in order to be properly aligned. The

lengths of their paths through ALS's are 9, 11, 9, 9 and 9, respectively, requiring additional
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Figure 4. Pipe for first e:cample

delays of 500, 499, 499, 1000 and 0 which are provided by the shift/delay unit. The Editor

can derive these delays from the offset expre.'_sions, and the dimensions from the variable

declaration, in this case "0(500,500.500) in mpl'. The variables G, U0 and U2 with

pipeline delays of 3, 10 and 10 also require additional alignment delays (1006, 999 and 999

respectively) which can be provided by the input PDMA's. The overall pipeline delay, the

1(.)



time before valid data are being generated, is 1009, the delay through the pipe plus the

longest shift in the shift/delay unit. PDMA's will transfer 251,009 values, the first 1009

of which the output PDMA's should discard.

Particular ALS's are now allocated to the pipe. The triplet must be ALS0 or ALS1; the

upper doublet must be ALS4 or ALSs. The remaining six ALS's (assuming the displayed

pipe is duplicated) can be assigned arbitrarily.

Variable declarations would look something like "U0(500.500.167) in rap0",

"UI(500.500.167) in mpl", "U2(500.500.167) in mp2", "U3(500.500.167) in mp3",

"U4(500.500.167) in mp4", "U5(500.500.167) in mp5", "G(500.500.501) in mp6",

and "R(800,500,501) in mp7". It would be pleasant if a controlling loop something

like "i :0..500×800x 167" could perform one third of the computations throughout the

volume U. However, since this pipe scans separated planes, G and R, as declared, cannot

be scanned with a single stride. One possibility might be to store G as Gk,i.j, but that

is obviously not a general solution to the problem. This leads to a control loop that

looks something like "i:0.. 800×800" for a computation length of 250,000 data. A further

problem lies in splitting G and R across two memory planes to feed two pipelines.

The control program would now be written to initiate these pipeline computations.

First, there must be at least three pipelines, using U0, U1 and U2, respectively, as the

source of the planes and the other two as the "vertical" neighbours. Further, it appears

that the present NSC design would need 167 versions of each pipeline for the 167 starting

addresses that correspond to different planes in the variables; no reasonable facility has

been described in the NSC for providing run-time parameters to pipeline definitions (other

than that provided through access to the microcode).

Comments on Example //1.

Examining this pipeline computation in detail shows several things. The complexities

of the abstract machine and its real counterpart support the view that the Editor is merely
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an aid to user who must control all choices. The two principal steps appear to be deter-

mining the structure of the pipeline, and allocating variables to memory (which includes

distributing variables among the planes and partitioning individual variables across mul-

tiple planes). It seems that the user must have a reasonably accurate idea for appropriate

choices in these steps before the editing process begins; the programming process described

above seems only useful for verifying and filling in the details of the final program.

This example also suggests that a major area for improvement with this machine is

the memory system. The high computation rates seem to need a higher bandwidth than

just sixteen paths to memory. Vector specification might well use a hierarchy of strides

and counts to provide nested loops of access to variables, if the microcode controlling the

DMA units could issue addresses rapidly enough.

Example #2.

In this example, we consider a recurrence taken from the Livermore Loops, Xi =

Z,(Y_ - Xi_l). Figure 6 shows a straight-forward implementation. Since there is a delay of

three from the use of X,_, to the availability of X_ at the same input, this pipeline relies on

the replication facility in the vector specification hardware to discard the two intervening

garbage values. This approach gives a vector rate of almost 7 MFLOPS, one third of the

20 MFLOPS provided by two ALU's, for a utilisation of 33%. There is a body of research

on solving such first order recurrences in parallel; the following solution is used merely to

study designing pipelines.

The above expression can be expanded to Xi = ZiY/- ZiZi-lYi-1 + ZiZi_IZi__Y__z -

ZiZi-IZi-2X_-3, a first pipeline for which is shown in Figure 7. Several choices were made:

the tree that combines the four terms to be added is deliberately unbalanced to minimise

the feedback delay involving X. For this pipeline, the Editor ought to be able to associate

the variable Xi-s with the appropriate ALS input in order to verify the delay specified.

Figure 8 shows the path lengths relative to the output, as they exist before delays are
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added. The branch labelled F has two paths to the output, but since both are of length

8, no action is necessary. The branch labelled G, however, leads to two paths of different

lengths, initially 4 and 6. In response to a_! error message, the user would insert a two

clock delay to correct this discrepancy; one possibility, shown in the diagram, is to add a

two cycle vector latch in the lower doublet ALS. Although the branch labelled H leads to

two paths of different lengths, the output pa_-h of length 1 and the feedback path of length

4, the Editor should not signal an error since the subscripts for the variables associated

with the paths, X_ and Xi-s differ by the same amount.

Next, delays are added to align the im_ut variables, which will incidentally resolve

discrepant path lengths arising at the two remaining branches. From left to right, the

variables and their pipeline lengths are: Z_ with 8, Y_ with 8, Y/-I with 8, Y_-2 with 6,

Z__I with 10, Z_ with 10 and Zi_2 with 8. Adding these lengths to the corresponding
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subscript offsets yields 8 for Zi, 8 for Y/, 7 for Y_-x, 4 for Yi-2, 9 for Z__I, 10 for Zi and 6 for

Z_-2. The difference between this list and a constant list of all 10's (the maximum value)

is 2,2,3,6,1,0,4. The remaining six vector latches shown in Figure 8 provide these delays.

(Note that the two two-clock delays in the triplet might as well have been combined into

a single two-clock delay in the following ALU (the one doing a subtraction)).
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The next step is allocating ALS's following the four branch points, the Y and Z inputs

and the two internal pipe branches. H is not included since it only feeds a single ALS.

Figure 9 shows one allocation to these five ALS's. This step was very easy. Any time there

is a branch, there are 6 ways to assign the labels a, b and c to the two or three resulting

paths. It appeared that the four branches in this diagram could be set in any order and

with any assignment without any backtracking being needed with subsequent branches. To

test this hypothesis, the labels a, b and c were assigned to the branches without looking

at the ALS labellings shown in Figure 2. A conflict occurred since both inputs to the

doublet labelled 6 ended up being labelled a and none of the eight doublets satisfies this.

Swapping the labels on branch F remedied this. Given the possibility of swapping ALU

inputs, branch G was the only limiting factor in assigning the triplet to be ALSs. ALSo

is also possible but is considered more "valuable" since it is a possible output from the

shift/delay units. Singlet ALS15 could be any other except ALSIs; singlet ALS14 could also

be ALS15; doublet ALS6 could be ALS, or ALSs, but these connect to the shift/delay units,

and doublet ALSz could be any except ALSI0 or ALS11. A promising order of allocation,

which would address the tightest limits first, would be to allocate ALS's with inputs from

branches in the order of singlets before doublets before triplets and then by the number of

labelled inputs. For this example at least, the cross constraints on ALS allocation due to

the input labelling shown in Figure 2 presented negligible difficulty to the programming

process.

This pipe will generate the vector X starting with X3. It is necessary to initialise

this pipeline by inserting the values X0, X1 and X_ into ALS7 and the FxF switch. These

might be previously calculated by running the pipeline shown in Figure 6 and placing these

values in the appropriate places and then shifting to this pipeline in a single time step.

The actual NSC has this capability.
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This method for calculating the recurren_:e uses 9 ALS's to generate values at the full

20 MFLOP speed for an effective utilisation of 22%.

Conclusions

Due to its design and purpose, the Navier- Stokes computer presents a difficult challenge

to being used at or near full effectiveness. A visual editor with verification facilities has
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been proposed as a support tool for the programmer in the seemingly necessary task of

programming the NSC at the hardware level.

The study of two example applications suggests that the programming method pre-

sented is appropriate for the NSC's target: identical calculations performed on large arrays

of data.

The study might also indicate useful modifications to the NSC design. In particular,

the channels to memory need to be much more flexible and probably more numerous. In

contrast, the extensive restrictions imposed by the use of permutation networks as opposed

to full cross-bar switches, appear not to affect the programming task noticeably, and so

may well remain or increase in the quest for more ALU's.
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